61 research outputs found

    Probing cilia-driven flow in living embryos using femtosecond laser ablation and fast imaging

    Get PDF
    Embryonic development strictly depends on fluid dynamics. As a consequence, understanding biological fluid dynamic is essential since it is unclear how flow affects development. For example, the specification of the left-right axis in vertebrates depends on fluid flow where beating cilia generate a directional flow necessary for breaking the embryonic symmetry in the so-called left-right organizer. To investigate flow dynamics in vivo proper labeling methods necessitate approaches that are compatible with both normal biology and in vivo imaging. In this study, we describe a strategy for labeling and analyzing microscopic fluid flows in vivo that meets this challenge. We developed an all-optical approach based on three steps. First we used sub-cellular femtosecond laser ablation to generate fluorescent micro-debris to label the flow. The non-linear effect used in this technique allows a high spatial confinement and a low invasiveness, thus permitting the targeting of sub-cellular regions deep inside the embryo. Then, we used fast confocal imaging and 3Dparticle tracking were used to image and quantify the seeded flow. This approach was used to investigate the flow generated within zebrafish left-right organizer, a micrometer scale ciliated vesicle located deep inside the embryo and involved in breaking left-right embryonic symmetry. We mapped the velocity field within the vesicle and surrounding a single beating cilium, and showed that this method can address the dynamics of cilia-driven flows at multiple length scales. We could validate the flow features as predicted from previous simulations. Such detailed descriptions of fluid movements will be valuable in unraveling the relationships between cilia-driven flow and signal transduction. More generally, this all-optical approach opens new opportunities for investigating microscopic flow in living tissues

    An all-optical approach for probing microscopic flows in living embryos

    Get PDF
    Living systems rely on fluid dynamics from embryonic development to adulthood. To visualize biological fluid flow, devising the proper labeling method compatible with both normal biology and in vivo imaging remains a major experimental challenge. Here, we describe a simple strategy for probing microscopic fluid flows in vivo that meets this challenge. An all-optical procedure combining femtosecond laser ablation, fast confocal microscopy and 3D-particle tracking was devised to label, image and quantify the flow. This approach is illustrated by studying the flow generated within a micrometer scale ciliated vesicle located deep inside the zebrafish embryo and involved in breaking left-right embryonic symmetry. By mapping the velocity field within the vesicle and surrounding a single beating cilium, we show this method can address the dynamics of cilia-driven flows at multiple length scales, and can validate the flow features as predicted from previous simulations. This approach provides new experimental access to questions of microscopic fluid dynamics in vivo

    Nonuniform temporal alignment of slice sequences for four-dimensional imaging of cyclically deforming embryonic structures

    Get PDF
    The temporal alignment of nongated slice-sequences acquired at different axial positions in the living embryonic zebrafish heart permits the reconstruction of dynamic, three-dimensional data. This approach overcomes the current acquisition- speed limitation of confocal microscopes for real-time three-dimensional imaging of fast processes. Current synchronization methods align and uniformly scale the data in time, but do not compensate for slight variations in the heart rhythm that occur within a heartbeat. Therefore, they impose constraints on the admissible data quality. Here, we derive a nonuniform registration procedure based on the minimization of the absolute value of the intensity difference between adjacent slice-sequence pairs. The method compensates for temporal intra-sample variations and allows the processing of a wider range of data to build functional, dynamic models of the beating embryonic heart. We show reconstructions from data acquired in living, fluorescent zebrafish embryos

    The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis

    Get PDF
    Left-right patterning and asymmetric morphogenesis arise from a complex set of molecular and cellular interactions that are particularly dynamic and associated with mechanical forces. How do mechanical forces translate into tissular asymmetries? Are these forces asymmetrical de novo, or do they build up from pre-existing asymmetries? Advances in developmental genetics, live imaging and cell biology have recently shed light on the origins of mechanical forces generated at the cell scale and their implication in asymmetric patterning and morphogenesis is now emerging. Here we ask when and how, molecular asymmetries and mechanical forces contribute to left-right patterning and organ asymmetries

    Multicolor two-photon light-sheet microscopy

    No full text
    International audienceTwo-photon microscopy is the most effective approach for deep-tissue fluorescence cellular imaging; however, its application to high-throughput or high-content imaging is often hampered by low pixel rates, challenging multicolor excitation and potential cumulative photodamage. To overcome these limitations, we extended our prior work and combined two-photon scanned light-sheet..

    Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo

    Get PDF
    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desynchronization of the segmentation clock oscillations. These data implicate retinoic acid as an endogenous signal that maintains the bilateral synchrony of mesoderm segmentation, and therefore controls bilateral symmetry, in vertebrate embryos

    Fluid flows and forces in development: functions, features and biophysical principles:

    Get PDF
    Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways

    The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear

    Get PDF
    In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths) 1. Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization

    Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium.

    Get PDF
    The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.Nadia Mercader was funded by the Spanish Ministry of Economy and Competitiveness through grant BFU2014-56970-P (Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016. Programa Estatal de I+D+i Orientada a los Retos de la Sociedad Retos Investigación: Proyectos I+D +i 2016, del Ministerio de Economía competitividad e Industria), and cofunding by Fondo Europeo de Desarrollo Regional (FEDER). Nadia Mercader is also supported by the European Industrial Doctorate Program EID 722427. Nadia Mercader and Julien Vermot are supported by the Swiss National Science Foundation grant ANR-SNF 310030L_182575. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 708312 (MP) and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme: GA Nº682938. Laura Andrés-Delgado was funded (2014-16) through the postdoctoral fellowship Ayudas Postdoctorales 2013. José Luis de la Pompa was supported by grants SAF2016-78370-R, CB16/11/00399 (CIBER CV) and RD16/0011/0021 (TERCEL) from the Spanish Ministry of Science and Innovation. The CNIC is supported by the Ministry of Science and Innovation and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field
    corecore